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Appendix E: Selecting an Appropriate Covariance Structure

Purpose: - Motivate the need to model covariance structures in a mixed model.
-Provide a listing and description of commonly used covariance structures.
-Provide guidelines for choosing an appropriate covariance structure.

E.1  Importance of Modeling Covariance (i.e., Temporal or Spatial Dependence in Data):

Many data sets in biological research have spatially and/or temporally correlated observations. An
example of spatially correlated data would be most field trails, because adjacent plots will probably
respond more alike than will plots that are further apart. An example of temporally correlated data
would be any experiment where data for the same variable are recorded on the same experimental
unit (plot, container, ...) over time, which is commonly referred to as a ‘repeated measures
experiment’. If you combine these two examples into a single experiment, field study (Completely
Randomized, Randomized Complete Block, Latin Square,....) with repeated measures over time of
the same variable on each plot, then you have both spatially and temporally correlated data. This is
a common scenario in a variety of studies, including fields, greenhouses, animals, humans, and
microarrays.

When data from such experiments lead to treatment and/or time comparisons, linear model
analyses with correlated errors should be considered. The MiXeD model procedure allows for the
estimation and testing of differences among treatment and/or time means when the experimental
errors are correlated. The purpose of this section is to introduce you to the analysis of temporally
and spatially correlated data using the MIXED procedure.

Why is it important to consider the temporal and/or spatial correlation among data? The
reason is the effect on sensitivity of tests of differences between means. It is easy to understand this
effect by examining the standard error of the difference between treatment means for independent
data versus correlated data.
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How does the standard error of the difference differ for correlated data?

The standard error of the difference between treatment means for correlated data includes the
covariance between measurements that are close enough together in time or space to be correlated.
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Covariance is the unstandardized correlation, that is, it’s units of measurement are those for the
dependent variable and can vary from minus to plus infinity. When the correlation is zero, the
covariance is zero, which corresponds to data that are far enough apart in time or space to be
independent. However, as the correlation increases the covariance increases, thus reducing the



E-2

variance of the differences for correlated data. As the correlation approaches one, the covariance
approaches the S, ? and thus the SED for highly correlated data approaches zero. The smaller the
SED the greater the precision of the test. There is also a down side. As the correlation increases
there is less unique information for estimation of the random variance. This is equivalent to having
fewer degrees of freedom for estimation of the random variance. The extreme case would be where
the correlation equals one, then additional data provides no new information about variability and no
additional degrees of freedom accumulate. Thus if the correlations are close to one the variance of
the differences may be small, but so are degrees of freedom and even though precision is high,
sensitivity may not be improved due to the small numbers of degrees of freedom.

The Analysis of Repeated Measures “Correlated” Data:

There are several options for analyzing repeated data. Three of these options are listed below, but
only the last one will be presented in this class.

-Run an analysis at each time period. Since each time period is analyzed separately no
statistical hypotheses about time effects can be conducted. In most cases this would be a
rather incomplete analysis of the data. However for an accumulative variable this may be the
most appropriate analysis. When the dependent variable is cumulative (e.g., height of plants
or dry matter accumulation to date), the data at any time contains the information from
previous time periods. Even on accumulative variables a repeated measures analysis may be
useful if the experimental objectives include about how the accumulation took place over
time.

-Compute a response index that captures the time-related information for each experimental
unit, and conduct the analyses on this index as the dependent variable (eg., Chapter 1,
Example 1.3). Common examples of this approach would be the analysis of growth rate,
area under the response curve and time to peak response. Such “response indexes” may be
parameters resulting from the fitting of non-linear growth curves. Once computed, these
parameter values can be used as dependent variables in a linear mixed models analysis.

-Use repeated measures analysis techniques that estimate the covariance among
residuals after fitting the fixed effects, and use these variance and covariance estimates to
compute appropriate standard errors and F-tests for fixed effect hypotheses.

If you wish to use the last approach for the analysis of repeated measures then the MiIXeD procedure
should be used, because a number of different covariance structures are available, one of which is
likely to fit your data. Model fitting statistics in the MIXED procedure are useful for determining
which covariance structure best describes the random variances and covariances among your
repeated measures. It will be necessary to try various covariance structures in order to examine the
goodness-of-fit measures for different structures. You will need to become familiar with the
available structures (Appendix E.2) in order to select (Appendix E.3) those that might be reasonable
for your data.

Covariance measures the degree of association among variables or in this case among repeated
measures of the same variable. More specifically repeated measures covariance structures estimate
the association among residuals of repeated measurements from the same experimental unit. SAS
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provides a number of standard variance and covariance relationships; a few selected ones are
illustrated on the following pages. A table summarizing the characteristics of these covariance
structures is also provided. See the SAS 9 Help pull-down menu (link provided in C.7) and look
under Syntax > Repeated for a comprehensive listing of cavariance structures offered in PROC

MIXED.

E.2 A Selected Listing of Covariance Structures:

Important:  In all below descriptions, the term “repeated measurement” refers in a broad sense to
measurements that may be correlated. Although “repeated measurements” can refer
to spatially-related measurements within a local area, these concepts may be most
readily comprehended by thinking of “repeated measurement” as a measurement
taken sequentially in “time” on the same experimental unit.

VC  Variance Components (i.e., Independent or Simple). Equal variances (¢%.) on the main-
diagonal and zero (0) covariances on the off-diagonals. That is, variances are constant and
the residuals are independent across time. This is What is assumed for the standard fixed
model ANOVA, but is seldom true with repeated measures. It is considered simple because
only a single parameter estimate, the pooled variance (¢%,) , is required. It is considered
independent because repeated measurements are not correlated with one another, no matter
how close together they are in either time or space.

Repeated Repeated Measure
Measure ] . . .
Timel Time2 Time3 Time4
Timel 0%, 0 0 0
Time2 0 o’ 0 0
Time3 0 0 o’ 0
Time4 0 0 0 0%

UN  Unstructured. Separate variances for each repeated measurement ( 6°;, 62, ... ) on the main-
diagonal and separate covariances for each pair of repeated measurements ( 0,;, O, ... , Oy3)
on the off-diagonals. This is essentially the multivariate repeated measures analysis. It is the
most complex structure, because a variance is estimated for each repeated measurement and
a covariance for each pair of repeated measurements. In the following example, there are t=4
variances (number of repeated measures = t) and six covariances [t(t-1)/2] for a total of ten
parameters to be estimated (Note: o ;; = 0,;). Besides being generally more difficult to
solve, the estimates will be less precise as compared to a solution with fewer estimates.
Think of this in terms of degrees of freedom. Given a fixed number of degrees of
freedom for the random effects, a single variance captures all of those degrees of
freedom, while the same degrees of freedom are divided among the estimates if more
than one parameter is estimated.
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Repeated Repeated Measure
Measure . . . .
Timel Time2 Time3 Time4
Timel 0% o, 0,3 Oy
Time2 0y o’ 0,3 Oy
Time3 O O3, o, 03
Time4 Oy Oy O3 0%,

Compound Symmetry. Equal variances ( 6% + o, ) on the main-diagonal and equal
covariances (o, ) on all off-diagonals (equal correlation). This structure is the simplest
repeated measures (i.e., correlated errors) structure. This is the general structure used to
analyze data collected according to a split-plot design. This covariance structure require two
parameter estimates: o and o, . A specific example of a CS covariance structure is a
RCBD where 0, = 0%,

Repeated Repeated Measure
Measure ] . . .
Timel Time2 Time3 Time4
H 2
Timel o°. + 0, (o} (o} (o}
Time2 o, o’ + 0, o, o,
: 2
Time3 o, o, o’ .+ 0, o,
Time4 o, o, o, o’ +0,

Heterogeneous Compound Symmetry. This covariance structure allows for unequal
variances ( 6%, 6%, ... ) on the main-diagonal and unequal covariances for all off-diagonals.
The magnitude of the covariances is based on the product of the standard deviations ( 0,0,,
0,03 ..., 0,05 ... ) multiplied by a single correlation coefficient (p) for the off-diagonal
covariances. Thus the correlation over repeated measurements is constant, but the
covariances are different depending on the differences in the standard deviations. This
covariance structure requires t+ 1 parameter estimates. For our example, t=4 and the
parameters to be estimated are: o, 0,, 05, 0,, and p.

Repeated Repeated Measure
Measure _ _ _ .
Timel Time2 Time3 Time4
Timel 0% p0,0, P00, p0,0,
Time2 00,0, 0%, p0,05 00,0,
Time3 p050; p050, 0%, p050,
Time4 p0,0, p0,0, p0,05 0%,
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AR(1) First-Order Auto-Regressive. Equal variances (o62.) on the main-diagonal. While on the off-
diagonal “bands”, the covariance is the variance times the repeated measures correlation
coefficient (p) raised to increasing powers (p, p? p3, ... ) as the measures become farther
separated (in time or space). Since the correlation coefficient is a decimal value, the
increasing powers result in decreasing covariances. Repeated measurements MUST be
correctly ordered (in time or space) and an assumption of “equal spacing” between
each repeated measurement must be reasonably applicable to your data. This structure
requires the estimation of two parameters ( o. and p ) plus it may be necessary to include the
experimental unit variance (i.e., Block or Subject effect) on the RANDOM statement since it is
not included in the covariance structure.

Repeated Repeated Measure
Measure . . . .
Timel Time2 Time3 Time4
Timel o’ p 0%, p? 0%, p® 0%
Time2 p 0% 0%, p 0% p? 0%,
Time3 p® 0%, p 0% 0%, p 0%
Time4 p® 0% p? 0% p 0% o’
ARH(1) Heterogeneous First-Order Auto-Regressive. This structure allows for unequal

variances ( 0%, 62, ... ) on the main-diagonal and unequal covariances on the off-

diagonal “bands”. The covariances are based on the product of the standard
deviations ( 0,0,, 0,03, ..., 0,05, ... ) times the repeated measures coefficient raised to
increasing powers (p, p?, p° ... ) as the measures become farther separated (in time or space).
Repeated measurements MUST be correctly ordered (in time or space) and an
assumption of “equal spacing” between each repeated measurement must be
reasonably applicable to your data. This covariance structure requires the estimation of t
+ 1 parameters (for our example: o,, 0,, 05, g, and p ) plus it may be necessary to include
the experimental unit (i.e., Block or Subject) variance on the RANDOM statement.

Repeated Repeated Measure
Measure . . . .
Timel Time2 Time3 Time4
Timel 0% p0,0, p%0,0, p%0,0,
Time2 p0,0, o’ p0,0, p%0,0,
Time3 p%0,0, P50, 0% p0,0,
Time4 p%0,0, p%0,0, 00,05 0%,
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TOEP Toeplitz. Equal variances (o2, ) on the main-diagonal, equal correlation and
covariances ( o,, 0,, ... ) within each off-diagonal “band”, and different correlation
and covariances among bands. Because the subscript (i) of o; refers to the “distance”
between the repeated measurement “periods” (in time or space), repeated measurements
are assumed to be equally spaced and correctly ordered. TOEP requires t parameter
estimates; for our example: o?, o,, 0,, and o,

Repeated Repeated Measure
Measure . . . .
Timel Time2 Time3 Time4
Timel o’ o, o, 0,
Time2 o, 0%, o, o,
Time3 o, o, 0%, o,
Time4 0, o, o, o’
TOEPH Heterogeneous Toeplitz. Although this covariance structure may be difficult to

intuitively understand, it is essentially a generalization of the TOEP strucutre. It

allows for unequal variances ( 6%;, 6%, ... ) on the main-diagonal, equal correlations
within each off-diagonal band, but different covariances within and among off-diagonal
bands. The covariances are different because their value is based on the product of the
standard deviations ( 0,0,, 0,03, ..., 0,05, ... ) multiplied by the correlation coefficient ( p,,
p,, ... ) for each off-diagonal. This covariance structure requires correct ordering and
assumes equal spacing of the repeated measurements (in time or space). TOEPH
requires t+ (t-1) parameter estimates; for this example: o,, 0,, 05, 04, Py, P, @nd ps.

Repeated Repeated Measure
Measure ] . . .
Timel Time2 Time3 Time4
Timel 0%, 10,0, 20,03 P30,04
Time2 P1020, 0’ P10203 P2020,
Time3 P2030; P1030; 0’ P1030,4
Time4 P3040, P2040; P10403 0’y

ANTE(1) First-Order Ante-Dependence. Although this covariance structure may be difficult
to understand intuitively, it is a generalization of ARH(1) and TOEPH structures
whose importance lies in the fact that the assumption of equal spacing between
repeated

measurements is NOT required. This structure allows for unequal variances ( 6%, 6%, ...)
on the main-diagonal and unequal correlations ( p,, p,, ... ) and covariances, where p, is the
correlation between repeated measurements 1 and 2, p, is the correlation between repeated
measurements 2 and 3, etc. The magnitude of the covariance depends on the magnitude of
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both the correlations and the standard deviations. Repeated measurements must be specified
in correct order (in space or time). This variance-covariance structure requires the estimation
of t+ (t-1) parameters.

Repeated Repeated Measure
Measure . . ] .
Timel Time2 Time3 Time4d
Timel 021 10,0, P1P20,03 P1P2P30,0,
Time2 10,0, 022 20,03 P2 P30,0,4
Time3 P2 L1030, 2030, 023 30304
Time4 P3P2P1040 P302040; 30403 o’
SP(POW)(x ) Spatial Power. This covariance structure is one of several structures available

in SAS in which covariances are mathematical functions of Euclidean

distances between observed measurements. These Spatial covariance
structures can be applied to temporally as well as spatially-related measurements and
equal spacing between measurements is NOT required. The “(x y)” is a listing of two
numeric variables in your data set that indicate the (X,y)-coordinate location of each observed
data value. PROC MIXED uses the actual (x,y) coordinates of your data points to compute the
Euclidean distance between each measurement. For our example, assume that the 4 repeated
measures are made on the same Experimental Unit at Times: 0 days, 1 day, 3 days, and 7
days. Hence, the d;;are Euclidean distances between times: dj,=d, =1-0=1day, d;;=dy
= 3-0 =3 days, d,,=d,, = 7-0 = 7 days, d,; = d;, = 3-1 = 2 days, d,,=d,,= 7 -1 = 6 days, and
dy,=d,=7-3=4days. The SP(POW)(x y) covariance structure requires that only 2
parameters o? and p be estimated.

Details can be found under ... Syntax > Repeated (from your SAS9 menu bar: Help > SAS
Help & Documentation > ... see link in C.7 ) regarding the other Spatial covariance
structures available in PROC MIXED. These structures allow exponential, linear, gaussian,
and spherical distributions and anisotrophic (i.e., directionally-changing) covariances.

Repeated Repeated Measure
Measure . . ] .
Timel Time2 Time3 Time4d
Tlmel 0.2 pd12 02 pd13 02 pd14 O.2
T|m62 pd21 0.2 0.2 pd23 02 pd24 0.2
Tlme3 pd31 02 pd32 02 02 pd34 02
Tlme4 pd41 0.2 pd42 02 pd43 02 0.2
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E.3 A Process for Choosing a Suitable Covariance Structure®:

To find a suitable covariance structure, try the following:

1) Try running the TYPE = UN (i.e. “unstructured” covariance) first. This is the most complex
structure and often fails to run with few replications or when there are many repeated
measures. This is generally not the one to use, but examination of the patterns in this
covariance matrix may often suggest a simpler structure that fits well.

2) Next, run the TYPE = CS (i.e., compound symmetry) structure. Compound symmetry is the
simplest repeated measures structure. In some cases it may be clear that a heterogeneous
variance structure will be needed. In such cases, you my choose TYPE = CSH as the
simplest reasonable structure.

3) Now run other covariance structures (Appendix E.2) that are reasonable based on: any
patterns seen in the unstructured matrix, the biology, and on your knowledge of the
experiment (spacing of time periods relative to the biology of the organism).

4) If none of the above covariance structures produce a significant (i.e., Pr > ChiSq < .05) test
for the Null Model Likelihood Ratio Test, this indicates there is no correlation present in the
model’s error structure. Use TYPE=VC to fit an independent covariance structure.

The Null Model Likelihood Ratio Test is a test to determine whether the covariance structure
specified in the TYPE= statement fits the data significantly better than a model that assumes no
correlation (i.e., independence = TYPE=VC). Typically, more than one of the candidate covariance
structures will yield a significant Null Model Likelihood Ratio Test. The most appropriate
covariance structure for the data is the structure with the smallest Akaike’s Information Criteria
(AICC) value. When two or more covariance structures yield a similarly small AICC value, let
parsimony guide you to choose the model with the fewest number of parameters (i.e., distinct
covariance values). Creating a diagnostics graph (Appendix B.2.5 and Appendix F.6.c.v.) will also
assist in making the best selection.

'See Chapter 5 for an illustrative example of this covariance selection process.

Note: Significance of the F-test CANNOT be used as a criterion for selecting the covariance
structure for a model.



